This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SCHIFF BASE COMPLEXES OF SOME GROUP IV METAL HALIDES

N. S. Neelam Jalila; Lara T. Hameeda

^a Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

To cite this Article Jalil, N. S. Neelam and Hameed, Lara T.(1996) 'SCHIFF BASE COMPLEXES OF SOME GROUP IV METAL HALIDES', Phosphorus, Sulfur, and Silicon and the Related Elements, 112: 1, 171 - 178

To link to this Article: DOI: 10.1080/10426509608046360 URL: http://dx.doi.org/10.1080/10426509608046360

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SCHIFF BASE COMPLEXES OF SOME GROUP IV METAL HALIDES

N. S. NEELAM JALIL† and LARA T. HAMEED

Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

(Received September 12, 1995; in final form November 9, 1995)

Novel hexa-coordinated complexes of silicon(IV), silicon(IV), silicon(IV) and silicon(IV) and

Key words: Amino acids, acetophenone, IR, UV, NMR, conductivity.

INTRODUCTION

Coordination compounds of Schiff bases have been widely investigated, in view of their novel structural features and potential chelating behavior.¹⁻³ Chelate extraction presently is one of the most widely used methods for the concentration and determination of trace amounts of metals.⁴⁻⁶ It is now recognized that synthetic macrocyclic ligands coordinate easily with most metal ions, forming stable chelates.⁷⁻¹⁴ The complexes with macrocycles have more symmetric and rigid structures than those containing flexible linear ligands.¹⁵⁻¹⁸ Considerable attention has been given in the past to transition metal complexes of Schiff bases obtained from amino acids.¹⁹⁻²⁹ There are no reports on the Group IV metal halide complexes of the Schiff bases derived from amino acids. In continuation of our studies³⁰ on the Group IV metal halide complexes with a variety of ligands and the immense importance of Schiff bases, it was considered worthwhile to explore the coordination behavior of these Schiff bases towards Group IV metal halides.

This study reports the synthesis and spectrochemical properties of the complexes of Si(IV), Ti(IV), Zr(IV) and Sn(IV) chlorides with Schiff bases derived from coupling of glycine, leucine and cystine with O-hydroxyacetophenone.

RESULTS AND DISCUSSION

The complexes of the general formula ML_2Cl_2 , were synthesized by the substitution reactions of metal chlorides and preformed Schiff base in situ, obtained by the condensation of O-hydroxyacetophenone and amino acids, in high yields, according to the following Scheme I.

Products (1) and (2) represent the structures of the Schiff bases and proposed

[†]To whom all correspondence should be addressed.

OH

$$CH_{3}$$

$$-H_{2}O$$

$$C=N-R-C$$

$$CH_{3}$$

$$-2HC1$$

$$CH_{3}$$

$$-2HC1$$

$$CH_{3}$$

$$-2HC1$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{7}$$

SCHEME I

structures of the complexes, respectively. Table I presents the analytical data and some of the physical properties of the complexes. The complexes are not brightly colored and are insoluble in most of the organic solvents. However, they are sufficiently soluble in DMSO to enable their molar conductivities to be measured. The molar conductivity measurements (20–32 Ohm⁻¹ cm² mol⁻¹) show them to be nonionic in nature. The adducts are non-hygroscopic, stable to air and decomposition into their constituents.

IR Spectra

Table II presents the important infrared spectral bands and their tentative assignments for the synthesized complexes. The Schiff bases used in the present study are po-

Downloaded At: 19:09 28 January 2011

TABLE I
nalytical data and some physical properties of the comple

	Analytical	data and	Analytical data and some physical properties of the complexes	al properti	es of the co	omplexes			
Compound/Complex	Colour	M.P.	% C Found (Calc.)	% H Found (Calc.)	% N Found (Calc.)	% S Found (Calc.)	% M Found (Calc.)	% Cl Found (Calc.)	% Yield
SiC12.(L-1)2 Si(C20H20N2O6)C12	Yellowish- brown	> 360	49.66 (49.68)	4.11 (4.14)	5.76 (5.80)	ı	5.78 (5.82)	14.68 (14.70)	70
TiC12.(L-1)2 Ti(C20H20N2O6)C12	Off-white	>360	47.71 (47.72)	3.95	5.52 (5.57)	I	9.48	14.10 (14.12)	72
ZrC12.(L-1)2 Zr(C20H20N2O6)C12	Brown	350	43.91 (43.94)	3.62 (3.66)	5.10 (5.13)	ſ	16.66 (16.70)	12.98 (13.00)	74
SnC12.(L-1)2 Sn(C20H20N2O6)C12	Dark-brown	>360	41.81 (41.83)	3.44 (3.49)	4.85	ſ	20.66 (20.69)	12.34 (12.38)	70
SiC12.(L-2)2 Si(C28H36N2O6)C12	Off-white	355	56.41 (56.46)	6.03	4.68 (4.70)	ſ	4.70 (4.72)	11.89	1.1
TiCl2.(L-2)2 Ti(C28H36N2O6)Cl2	Brown	>360	54.61 (54.64)	5.82	4.52 (4.55)	ſ	7.75	11.53 (11.55)	74
ZrC12.(L-2)2 Zr(C28H36N2O6)C12	Off-white	355	50.02 (50.05)	5.43	4.22 (4.25)	ı	13.82 (13.86)	10.76 (10.79)	76
SnC12.(L-2)2 Sn(C28H36N2O6)C12	Brown	>360	48.97 (49.00)	5.22 (5.25)	4.05 (4.08)	ı	17.27	10.30 (10.35)	72
SiC12.(L-3)2 Si(C28H34N4010S4)C12	Off-white	350	41.30 (41.32)	4.13 (4.18)	6.85	15.71 (15.74)	3.42	8.70 (8.73)	74
TiC12.(L-3)2 Ti(C28H34N4O10S4)C12	Yellowish- brown	340	40.31 (40.34)	4.05 (4.08)	6.69 (6.72)	15.35 (15.37)	5.71 (5.75)	8.48 (8.52)	76
ZrC12.(L-3)2 Zr(C28H34N4O10S4)C12	Brown	350	38.31 (38.35)	3.85	6.35 (6.39)	14.57	10.38	8.07	72
SnC12.(L-3)2 Sn(C28H34N4O10S4)C12	Brown	>360	37.14 (37.18)	3.73	6.15 (6.20)	14.15 (14.16)	13.10 (13.13)	7.81	70

L-1 = 0-Hydroxyacetopheno-glycine, L-2 = 0-Hydroxyacetopheno-leucine,

L-3 = Q-Hydroxyacetopheno-cystine.

TABLE II
Some important IR frequencies (cm ⁻¹) ^a of the complexes

Complex	Уп-н	V oco	ν c-0	√2 M-0	√) M-C1
sic1 ₂ .(L-1) ₂	3400vs	1640s	1280m	520w	360s
TiCl ₂ .(L-1) ₂	3400vs	1643s	1280m	485w	380s
ZrC1 ₂ .(L-1) ₂	3400vs	1643s	1280m	495w	350s
SnC1 ₂ .(L-1) ₂	3400s	1640s	1280m	500w	350s
SiC1 ₂ .(L-2) ₂	3380s	1640m	1285m	510m	365s
TiC1 ₂ .(L-2) ₂	3380s	1642m	1285m	490m	375s
ZrC1 ₂ .(L-2) ₂	3380s	1643m	1285m	490m	348s
SnC1 ₂ .(L-2) ₂	3380s	1641m	1285m	510w	350s
SiC1 ₂ .(L-3) ₂	3390s	1642s,br	1290s	520m	360s
TiC12.(L-3)2	3390s	1643s,br	1290s	490m	380s
ZrC1 ₂ .(L-3) ₂	3390s	1643m,br	1290s	490w	350s
SnCl ₂ .(L-3) ₂	3390s	1640m,br	1290s	500m	345s

 $L-1 = \underline{0}$ -Hydroxyacetopheno-glycine, $L-2 = \underline{0}$ -Hydroxyacetopheno-leucine,

L-3 = Q-Hydroxyacetopheno-cystine

a = vs, very strong; s, strong; m, medium; or br, broad.

tentially multidentate ligands. There is not much difference in the IR bands of these ligands. A band around 3400 cm⁻¹ assignable to the vNH vibration indicates the presence of ketoenamine form of the Schiff bases in the solid state.³¹ Some workers have assigned this band due to ν OH/NH frequency. ^{32,33} However, the preferred orientation of the ligand is the imine form which is confirmed by a band assignable to ν C—O (phenolic) at 1280 cm⁻¹ in the ligands.²⁶ There is no significant change in the position and intensity of ν N—H and ν C—O bands in the complexes, compared to Schiff bases. This rules out the possibility of coordination through phenolic oxygen and imino nitrogen. The only possible group for coordination which remains is the carboxylate group. Two bands at 1675 and 1610 cm⁻¹ are assigned to OCO asymmetric stretch and coupled imine C=N and C=C stretching vibrations, respectively. A band corresponding to ν_{sym} OCO appears at 1350 cm⁻¹ in Schiff bases. On complexation these bands disappear and new bands emerge around 1640 cm⁻¹ in all the complexes. This is assigned to the bidentate chelating carboxylate group. This suggests that coordination is taking place through carboxylate group. A band around 1500 cm⁻¹ may be attributed to the C=C/C=N stretching vibrations of the conjugated imide^{26,34} in all the Schiff bases and complexes.

In the lower frequency region, a band around 500 cm⁻¹ in the spectra of all the complexes has been assigned to the M—O vibrations, thus lending further support

to the coordination through the carboxylate group. In all the complexes a νM —Cl band is observed around 360 cm⁻¹.

UV Spectra

Table III reports the UV absorption spectra of the complexes measured in DMSO- d_6 . All the complexes gave bands in the range 220–225 cm⁻¹ and in addition to this, titanium and zirconium complexes also showed bands in 320–350 cm⁻¹ region. However, the precise assignments of these bands remains to be determined. It is assumed that the intense bands near 220–225 cm⁻¹ are due to ligand transitions; $\pi \to \pi^*$ of the benzenoid/or $n \to \pi^*$ and weaker band near 320–350 cm⁻¹ is either a $n \to \pi^*$ transition or a charge-transfer (ligand \to d orbital) or a $\pi \to \pi^*$ transition of C=N chromophore. From the present data it is clear that the bands in the metal derivatives are stronger than the corresponding Schiff base bands. Also the highest energy bands (220–225 cm⁻¹ region) in titanium complexes are at higher energies than the corresponding bands in other complexes, whereas, in the ca. 320–350 cm⁻¹ region bands, the zirconium complexes are at higher energy. The latter effect is reasonable for a charge-transfer band because the titanium is more easily reduced [Ti(IV) \to Ti(III)] than zirconium. No charge-transfer band is observed for the silicon and tin complexes; perhaps this band may be observed in the far-UV

TABLE III
Electronic absorption spectra of the complexes

Complex	λ max*, nm	
SiC1 ₂ .(L-1) ₂	225 (3.41)	350 (3.35)
TiC1 ₂ .(L-1) ₂	225 (3.75)	320 (3.50)
ZrCl ₂ .(L-1) ₂	225 (3.80)	330 (3.50)
SnC1 ₂ .(L-1) ₂	225 (3.50)	340 (3.20)
SiC1 ₂ .(L-2) ₂	220 (3.42)	350 (3.38)
TiCl ₂ .(L-2) ₂	220 (3.80)	325 (3.50)
ZrCl ₂ .(L-2) ₂	220 (3.85)	330 (3.60)
SnC1 ₂ .(L-2) ₂	220 (3.50)	340 (3.60)
SiCl ₂ .(L-3) ₂	224 (3.50),	350 (3.30)
TiCl ₂ .(L-3) ₂	229 (3.30) 224 (3.85),	325 (3.60)
ZrC1 ₂ .(L-3) ₂	227 (3.80) 224 (3.85),	330 (3.65)
SnC1 ₂ .(L-3) ₂	228 (3.32) 224 (3.50), 230 (3.40)	340 (3.25)

region. The first absorption band in the cystine Schiff base complexes shows some splitting, while in the other two series of the complexes no splitting of these bands is observed. The splitting of this band cannot be explained unambiguously; most likely, it is due to the lower symmetry of these complexes.

NMR Spectra

¹H NMR spectra of the Schiff bases and the complexes have been recorded in DMSO-d₆ (Table IV). The ¹H NMR signals due to CH and CH₂ protons α to metal bound carboxylate groups in leucine, cystine and glycine Schiff base complexes, respectively, show downfield shifts (up to 0.8 ppm) compared to their respective free Schiff bases. The downfield shift clearly indicates a decrease in electron density around the carbon α to the carboxylate group due to the coordination of carboxylate oxygens with the metal ion. The other proton signals remain unchanged which may be explained by assuming that the other groups are not interacting with the metal ion and the effect of coordination of carboxylate group diminishes as the distance from the metal ion increases.

On the basis of the above studies, it is clear that the Schiff bases are behaving as

TABLE IV

1H NMR chemical shift of the complexes

Complex	∠ Proton Chemical	
	СН2	СН
0:01 (7.1)	2.38s	_
SiC1 ₂ .(L-1) ₂		
TiCl ₂ .(L-1) ₂	2.37s	-
ZrC1 ₂ .(L-1) ₂	2.34s	-
$snCl_2.(L-1)_2$	2.32s	-
siC1 ₂ .(L-2) ₂	-	2.42-2.89m
TiC12.(L-2)2	-	2.41-2.89m
zrC1 ₂ .(L-2) ₂	-	2.40-2.88m
SnCl ₂ .(L-2) ₂		2.40-2.88m
$sicl_2.(L-3)_2$	-	2.44-2.90m
TiCl ₂ .(L-3) ₂	-	2.43-2.89m
zrC1 ₂ .(L-3) ₂	-	2.43-2.88m
SnCl ₂ .(L-3) ₂	-	2.43-2.88m

a Downfield chemical shifts (S values) relative to tetramethylsilane as internal reference.

s = singlet, m = multiplet.

bidentate chelating agents coordinating through the carboxylate oxygens. Chelate structures are proposed for the complexes.

EXPERIMENTAL

All reactions involving metal chlorides were carried out under dry oxygen-free, nitrogen in a dry-box. Silicon(IV), titanium(IV), zirconium(IV), tin(IV) chlorides, O-hydroxyacetophenone (B.D.H.) and glycine, leucine and cystine (Sigma Chemicals) were used as received. Solvents were dried using standard methods. Melting points were recorded on a Gallenkamp melting point apparatus. Elemental analysis for carbon, hydrogen and nitrogen were carried out on a Coleman analyzer. Determinations of chlorine, metal and sulphur were done gravimetrically.³⁷ The molar conductances of the complexes were determined at 10⁻³ M concentration in DMSO using a Waynekerr Universal conductivity bridge type B-221. Infrared spectra were recorded as KBr mulls on a Perkin Elmer 621 spectrophotometer. Proton magnetic resonance spectra (reference: tetramethylsilane) of the complexes were run on a Varian T-60 spectrometer at an operating temperature of 38°C. The electronic absorption spectra were recorded in silica cells on a Unicam SP-800 spectrophotometer in the range of 800-250 nm.

Preparation of the Schiff Bases and the Complexes

The complexes of the general formula ML₂Cl₂ (M = Si, Ti, Zr or Sn and L = O-hydroxyacetopheno-amino acid Schiff base) were prepared by reacting the preformed Schiff base with the metal chloride. The Schiff bases were prepared by literature methods with slight modifications.^{26,33} In a typical preparation, 20 mmole of the amino acid (1.50 g glycine, 2.62 g leucine or 4.80 g cystine) was dissolved in 30 mL of absolute ethanol and a solution containing 20 mmole (2.4 mL) of O-hydroxyacetophenone in 30 mL of absolute ethanol was added. The mixture was refluxed at 50°C for four hours. The Schiff base and water were formed in the reaction mixture. After cooling the reaction mixture to room temperature the Schiff base was isolated by treating the reaction mixture with 50 mL diethyl ether and removing the water by a solvent batch extraction process. Diethyl ether was removed from the Schiff base by heating at 35–40°C for 20 min. To the isolated solution of Schiff base in ethanol, 10 mmole of the metal chloride (1.69 g SiCl₄, 1.89 g TiCl₄, 2.33 g ZrCl₄ or 2.61 g of SnCl₄) in 20 mL acetone was added dropwise and the mixture was again refluxed at 50°C for two hours, when a solid appeared. The excess of solvent was removed under reduced pressure. The solid complex was washed with 20 mL of absolute ethanol, 20 mL acetone and 10 mL diethyl ether. The complex was dried in an oven at 110°C for six hours and finally in a vacuum desiccator for four hours.

REFERENCES

- 1. R. H. Holm, G. W. Everett Jr. and A. Chakarvorty, Prog. Inorg. Chem., 7, 83 (1966).
- 2. S. Yamada, Coord. Chem. Rev., 1, 415 (1965).
- 3. N. F. Curtis, Coord. Chem. Rev., 3, 3 (1968).
- 4. V. M. Peshkova, A. I. Khahtova and N. V. Mel'chakova, Zh. Anal. Khimii., 39, 2046 (1984).
- 5. Y. Akama, T. Nakai and F. Kawamura, Analyst, 106, 250 (1981).
- Yu. A. Zolotov, N. T. Sizonenko, E. S. Zolotovitskaya and E. I. Yakovenko, J. Anal. Chem. USSR, 24, 15 (1969).
- 7. K. Sakata, T. Kikutake, Y. Shigaki, M. Hashimoto, H. I. Ogawa and Y. Kato, *Inorg. Chim. Acta*, 144, 1 (1988).
- 8. M. C. Weiss and V. L. Goedken, J. Amer. Chem. Soc., 98, 3389 (1976).
- 9. A. R. Cutler, C. S. Alleyne and D. Dolphin, Inorg. Chem., 24, 2276 (1985).
- 10. J. Eilmes, D. Delan and E. Sledziewska, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 28, 371 (1980).
- 11. D. A. Place, G. P. Ferrara, J. J. Harland and J. C. Dabrowiak, J. Heterocycl. Chem., 17, 439 (1980).
- 12. W. U. Malik, R. Bembi, R. Singh, S. P. Taneja and D. Raj, Inorg. Chim. Acta, 68, 223 (1983).
- 13. R. P. Hotz, S. T. Purrington and R. D. Bereman, Inorg. Chim. Acta, 115, L 49 (1986).
- 14. C. L. Bailey, R. D. Bereman, D. P. Rillema and R. Nowak, Inorg. Chem., 23, 3956 (1984).
- 15. G. Bombieri, F. Benetollo, A. Polo, L. D. Cola and L. M. Vallarino, Inorg. Chem., 25, 1127 (1986).
- A. M. Arif, J. D. J. Backer-Dirks, C. J. Grey, F. A. Hart and B. Hursthouse, J. Chem. Soc. Dalton Trans., 1665 (1987).
- 17. K. Sakata, Y. Hayashida and M. Hashimoto, Synth. React. Inorg. Met.-Org. Chem., 21, 239 (1991).
- 18. G. Reid and M. Schroder, Chem. Soc. Rev., 19, 239 (1990).
- 19. R. C. Burrows and J. C. Bailar, J. Amer. Chem. Soc., 88, 4150 (1966).
- 20. Y. Nakao, K. Sakurai and A. Nakahara, Bull. Chem. Soc. Japan, 40, 1536 (1967).

- L. J. Theriot, G. O. Carlisle and H. J. Hu, J. Inorg. Nucl. Chem., 31, 2841 (1969); ibid, 31, 2891 (1969).
- 22. G. N. Weinstein, M. J. O'Connor and R. H. Holm, Inorg. Chem., 9, 2104 (1970).
- 23. G. O. Carlisle and L. J. Theriot, J. Inorg. Nucl. Chem., 35, 2093 (1973).
- 24. R. L. Dutta and K. R. Ray, J. Inorg. Nucl. Chem., 39, 1343 (1977).
- 25. V. V. Ramanujam and B. Sivasankar, J. Ind. Chem. Soc., LVIII, 1152 (1981).
- 26. N. S. Biradar, V. L. Roddabasanagoudar and T. M. Aminabhavi, *Polyhedron*, 3, 575 (1984).
- T. M. Aminabhavi, N. S. Biradar, G. V. Karatagi and W. E. Rudzinski, *Inorg. Chim. Acta*, 91, 49 (1984).
- T. M. Aminabhavi, N. S. Biradar, S. B. Patil, V. L. Roddabasanagoudar and W. E. Rudzinski, *Inorg. Chim. Acta*, 107, 231 (1985).
- 29. G. Wang and J. C. Chang, Synth. React. Inorg. Met.-Org. Chem., 21, 897 (1991).
- N. S. Neelam Jalil, Synth. React. Inorg. Met.-Org. Chem., 20, 1285 (1990) and the references therein;
 ibid, (1995) accepted; N. S. Neelam Jalil and L. T. Hameed, ibid, (1995) accepted; N. S. Neelam Jalil and S. A. Saidu, Phosphorus, Sulfur and Silicon, (1995) accepted.
- 31. G. Marcotrigiano, L. Menabue and G. C. Pellacani, J. Inorg. Nucl. Chem., 40, 165 (1978).
- 32. M. Singh, Synth. React. Inorg. Met.-Org. Chem., 15, 235 (1985).
- 33. C. N. R. Rao, "Chemical Application of Infrared Spectroscopy," Academic Press, Inc., New York, 1963, pp. 611 and 612.
- 34. M. Nath, C. L. Sharma and N. Sharma, Synth. React. Inorg. Met.-Org. Chem., 21, 807 (1991).
- 35. A. H. Ewald, R. L. Martin, I. G. Ross and A. H. White, Proc. Roy. Soc., A, 280, 235 (1964).
- 36. M. J. Jansen, Rec. Trav. Chim., 79, 454 (1960).
- J. Bassett, R. C. Denney, C. H. Jeffery and S. Mendham, "Vogel's Textbook of Quantitative Inorganic Analysis," 4th Edition, Longman, London, 1981, pp. 261, 494, 496 and 507.